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Abstract

Accurate electrode placement is crucial for reliable
ECG simulation. We compare a fully automated method
and a manual approach with expert input for position-
ing electrodes on MRI-based 3D torso meshes. Both ap-
proaches use the same heart model to generate synthetic
ECGs via monodomain simulations. Pearson correlation
and rRMSE indicated variable waveform similarity across
leads. Sensitivity analysis revealed that limb electrodes in-
fluence multiple channels, whereas chest electrodes mostly
affect their own leads. Results emphasize the importance
of anatomically accurate placement in computational ECG
workflows.

1. Introduction

Electrocardiography (ECG) remains a widely used diag-
nostic tool for assessing cardiac function, with its accuracy
relying heavily on proper electrode placement on the torso
surface [1]. Even small positioning errors can significantly
alter ECG waveforms, potentially impacting clinical deci-
sions.

Advances in medical imaging and segmentation have
enabled personalized cardiac models from magnetic res-
onance imaging (MRI) or computed tomography (CT).
However, mapping electrodes onto complex 3D surfaces
remains challenging due to torso shape variation, conduc-
tivity differences, and user expertise [1]. To mitigate this,
both automated and semi-automated electrode placement
methods have been developed, often integrating image-
based tools like 3D Slicer [2].

This study compares two such methods on patient-
specific torso meshes: a fully automated pipeline and an

expert-guided approach. Using the same heart mesh and
stimulus for both, we assess how placement affects ECG
morphology, highlighting trade-offs in speed, accuracy,
and clinical interpretability.

2. Methods

This study investigates two different approaches for
placing electrodes on 3D torso meshes, comparing
their performance through ECG simulations using the
MONOALG3D software. The meshes were generated af-
ter the segmentation of magnetic resonance images from a
patient with dilated cardiomyopathy.

Patient Report
This study included four patients monitored at the car-

diology outpatient clinic of the University Hospital at the
Federal University of Juiz de Fora (UFJF). All patients un-
derwent cardiac MRI. Table 1 summarizes the information
of the cohort, where EF stands for ejection fraction.

Patient Sex Age (years) Weight (kg) EF (%)
P1 Male 71 76.4 20
P2 Female 79 54.0 21
P3 Male 71 Unknown 34
P4 Male 72 119 22

Table 1: Patient data summary

2.1. Automatic Electrode Placement

The first method consists of an automated pipeline based
on [3]. The procedure uses the same MRI dataset to au-
tomatically segment both the torso and the heart. The
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pipeline starts with machine learning-based torso contour
extraction, where the scout MR images for each subject are
first segmented using a convolutional neural network (U-
Net), followed by automated post-processing and refine-
ment through a second network [4]. Extracted contours
are then used to fit a statistical shape model (SSM) of the
human body, which is iteratively adjusted to match the ex-
tracted contours and form an initial torso mesh. To capture
subject-specific anatomical variation, the mesh is further
deformed using thin plate splines, with post-processing
steps to ensure smoothness and anatomical plausibility.
The locations of the ECG electrodes are identified on the
mean SSM torso, and their positions are transformed with
the mesh such that the resulting torso had electrodes lo-
cated in equivalent locations. This fully automated work-
flow minimizes human intervention, ensuring high-speed
processing and reproducibility across datasets.

2.2. Manual Electrode Placement

In his method only Patient 1 had an available CT scan,
which enabled rib cage segmentation using TOTALSEG-
MENTATOR [5]. The rib cage structures, together with the
sternum, were subsequently transferred to the cardiac MRI
of Patient 1 using the ELASTIX registration framework [6]
and the TRANSFORMIX tool. In addition, anatomical ref-
erence lines (hemiclavicular, anterior axillary, and mid-
axillary) were delineated on the CT and mapped to the
MRI through the same transformations. It is important to
note that, even for Patient 1, all electrode placement was
ultimately performed on the MRI, since the main goal of
this workflow is to provide a methodology applicable to
MRI-based torso segmentations.

For the remaining patients, who only had cardiac MRI,
the rib cage segmentation and anatomical reference lines
from Patient 1 were propagated to their MRIs using the
same registration pipeline. These transferred structures
provided additional anatomical landmarks, which facili-
tated electrode placement.

The resulting meshes and transferred anatomical guides
were then loaded into a custom-developed interactive ap-
plication, where clinicians manually positioned the elec-
trodes on the torso surface. Figure 1 illustrates the inter-
face of this tool. The application enabled navigation in
the 3D environment, visualization of individual anatomical
meshes, and precise placement of the 10-lead electrodes
using predefined labels. Each electrode could be adjusted
in 3D space through translation arrows, and its position
was stored in real time.

2.3. ECG Simulation and Analysis

For both torso and electrode placements, the heart mesh
generated by method in [7] was used to simulate the elec-

Figure 1: Interface of the custom software used for manual
electrode placement.

trical propagation using the monodomain model through
the open-source software MONOALG3D [8]. The human-
based Ten Tusscher cellular model [9] was employed to
describe the cellular dynamics. Cardiac tissue conductiv-
ity tensor σ was modeled as anisotropic, incorporating the
fiber orientation and a prescribed anisotropy ratio. Tempo-
ral discretization was set at ∆t = 0.02 ms, while spatial
discretization was h = 500 µm, with Cm = 1 µF/cm2

and β = 1400 cm−1. An instantaneous activation was ini-
tiated simultaneously over the entire endocardial surface,
and ECG signals were subsequently computed at the elec-
trode positions.

3. Results

Figure 2 shows a 3D visualization of the torso mesh
from patient 3 along with the manually and automatically
placed electrodes. Each pair of corresponding electrodes is
connected by a black line to indicate spatial displacement.

To quantitatively evaluate the placement differences be-
tween methods, Table 2 presents the spatial displacements
between corresponding manual and automatic electrodes.
For each lead and each patient, we report the differences
as the Euclidean distance. All values are expressed in cen-
timeters (cm).

Figure 3 shows the ECG waveforms from the 12 stan-
dard leads for both manual and automatic electrode con-
figurations from patient 3. Blue lines correspond to ECGs
generated with manually placed electrodes, while dashed
red lines represent the signals using the automatic config-
uration.

Waveform comparisons reveal close agreement between
manual and automatic placements in most leads, with
nearly identical morphology in I, aVR, aVL, V2, V5, and
V6. Noticeable discrepancies appear in leads II, III, V3,
and V4, where differences in both amplitude and wave-
form shape can be observed. These results indicate that
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Figure 2: Three-dimensional representation of the torso
and heart with manual (blue) and automatic (red) electrode
placements. Black lines connect corresponding electrode
pairs.

Table 2: Spatial difference between manual and automatic
electrode positions (in cm).

Lead P1 P2 P3 P4
V1 0.770 5.148 3.235 1.267
V2 1.021 5.828 3.142 1.670
V3 1.096 6.112 3.250 1.560
V4 1.344 6.310 2.725 1.279
V5 6.577 6.089 5.390 8.196
V6 4.012 6.790 1.437 4.555
LA 10.423 10.113 10.161 9.434
LL 31.714 31.613 32.613 27.082
RL 32.857 32.260 33.704 28.298
RA 10.283 8.726 9.583 9.790

while the automatic method reproduces the manual place-
ments with high fidelity overall, the precordial leads re-
main particularly sensitive to small positional variations.

As shown in Table 3, Patient 1 exhibited the best over-
all performance, with high correlation (r = 0.88) and the
lowest relative error (47.2%), indicating good agreement
between placement strategies. In contrast, Patient 2 pre-
sented much poorer results (r = 0.68, rRMSE ≈87%),
suggesting strong discrepancies in both waveform and am-
plitude. Patients 3 and 4 showed relatively high correla-
tions (r = 0.82 and r = 0.86, respectively), but with ele-
vated relative errors (59% and 81%).

To investigate how sensitive the final multichannel ECG
is to variations in individual electrode placement, we con-
ducted a systematic analysis: each automatic electrode was

Figure 3: Comparison of 12-lead ECG signals generated
from manual (blue) and automatic (dashed red) electrode
placements from patient 3.

Table 3: Global results of correlation (Pearson) and rela-
tive error (rRMSE) between electrode placement strategies
for each patient.

Patient Pearson Global rRMSE Global (%)
P1 0.8828 47.20
P2 0.6802 87.03
P3 0.8162 58.86
P4 0.8584 80.55

replaced one at a time by its corresponding manual coun-
terpart. After each substitution, a full 12-lead ECG was
computed and compared to the original fully automatic
configuration. Table 4 summarizes the results of this anal-
ysis for patient 3 using the relative root mean square er-
ror (rRMSE) for each multichannel lead, expressed as a
percentage. Each row in the table corresponds to the sub-
stitution of one of the ten electrodes (rows 1 to 10 repre-
sent electrodes V1–V6, LA, LL, RA, and RL respectively).
Each column shows the resulting rRMSE for a specific lead
in the 12-lead ECG system: leads I, II, III, aVR, aVL, aVF,
and precordial leads V1–V6.

This analysis serves as a localized sensitivity test, re-
vealing how the final 12-lead ECG is affected when a sin-
gle electrode from the automatic configuration is replaced
by its manual counterpart. The values in Table 4 represent
the rRMSE introduced in each multichannel lead due to
such substitutions.

As expected, precordial electrodes (V1–V6) exhibit
strong sensitivity primarily to their corresponding leads,
with errors concentrated along the diagonal of the matrix
(e.g., V1 → V1 = 44%, V6 → V6 = 20%).

In contrast, limb electrodes (LA, LL, RA) exert broader
influence across multiple leads. Replacing LA markedly
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Table 4: rRMSE (%) for each multichannel lead after re-
placing one automatic electrode with the manual one for
patient 3.

Lead /
Electrode I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

V1 0 0 0 0 0 0 44 0 0 0 0 0
V2 0 0 0 0 0 0 0 45 0 0 0 0
V3 0 0 0 0 0 0 0 0 73 0 0 0
V4 0 0 0 0 0 0 0 0 0 44 0 0
V5 0 0 0 0 0 0 0 0 0 0 45 0
V6 0 0 0 0 0 0 0 0 0 0 0 20
LA 64 0 70 59 67 78 6.0 7.2 8.3 7.4 11 14
LL 0 792 79 66 38 173 6.7 8.0 9.3 8.3 13 16
RA 53 584 0 98 28 64 4.9 5.9 6.9 6.1 9.5 12

affects lead I (64%), aVL (67%), and aVF (78%), while
also producing non-negligible changes in some precor-
dial leads such as V6 (14%). Similarly, LL has a dif-
fuse impact, particularly on II (790%), III (79%), and aVF
(170%), and introduces moderate alterations in the precor-
dials (up to 16%). RA also perturbs several limb leads
(e.g., I = 53%, aVR = 98%), though its overall influence is
slightly more localized compared to LA and LL.

Interestingly, V6 again emerged as the most sensitive
precordial lead to variations in limb electrode positions,
showing measurable deviations when LA and LL were
substituted. This suggests that despite its chest location,
V6 is susceptible to torso-wide field changes induced by
limb electrodes.

4. Conclusion

This study compared a fully automated pipeline with
respect to a semi-automatic, expert-driven approach for
electrode placement on MRI-derived torso meshes, assess-
ing their impact on simulated 12-lead ECGs. While most
precordial leads showed small spatial discrepancies, limb
electrodes exhibited larger deviations and stronger influ-
ence across multiple leads.

Waveform comparisons revealed that even minor spa-
tial errors can cause significant morphological differences,
particularly in V6, highlighting the clinical sensitivity of
electrode positioning. Although the absence of rib cage
and sternum segmentations limited definitive accuracy as-
sessment, the results emphasize the trade-off between au-
tomation and anatomical precision, and point to the need
for refined strategies in automatic electrode placement.
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